SQL Tuning Worksheet
I have created this document to organize/guide/remind people of essential ideas and steps in the tuning process. But this document has fought me a bit, most notably in the area of page size. I want the document to read well, especially for any pasted work a tuner puts into the document, but many times the artifacts are wide (they run off the edge of the page). Being stupid as I am, and not a super user of MS-WORD, the only thing I could figure out was to make the page size really big and use the WEBLAYOUT view. I have also attached the SQL*Plus files used for information gathering, directly in this document so that they will never get “lost”. But this also requires that these files must be kept up-do-date by YOU, whenever I send you updated scripts. I am not sure if this is more work or less than just shipping around a zip file with the scripts. But it does look neat to have the files embedded in the doc.
This document provides the following grouped sections to help you tune and then document your success.
· Contact info (1)
· Solution Summary (2)
· Initial Information Acquisition (3)
· Details of your Analysis (4)
· Reminders of what to do (all the other sections (5-12) plus commentary where valuable)
· Helper SQL Scripts (liberally distributed throughout the document)

Contact Information
Your contact info
Name: Kevin Meade
Email: km133688@sbcglobal.net
Business Phone: 1.860.425.0881
[image: User Photo] Nice, a picture that is 22 years old, shows me in a much better light (that was my favorite tie). Naturally you will replace this with your picture once you get started.
Requestor contact info
Name:
Email:
Business phone:
Role (manager/developer/user):
Application owning the query:
Solution Summary
Query Identity is intended to be the “name” of the query as Oracle knows it; something unique that Oracle and you can use to find the query on a system over and over. In general I tend to use the identifying data from the TOP-N report if that is how I found the query (trolling) or I ask the requestor for it or otherwise get it myself. Also, the data I use for this comes from the query I actually tune, not the query that was originally reported. Thus if tuning is done on a DEV database, then that info from that database goes in this report. Later you will get a chance to note which database first exhibited the problem. If you are tuning on a different database from the problem database, you can include additional identifying info as you deem needed.
Descriptions here should be short and sweet. Tuning details will be captured in later sections. Do not forget to mention how much better things are after your fixes. That said, this is your report, and your work, so always capture in whatever section you are working, whatever it is you want to say.
SHOWALL11G.SQL is new. Feed it data from the showtopcpu11g.sql report. That report has a helper line for it.
Query identity

[bookmark: _GoBack]
Date and Time:
Database:
DBID:
INST_ID:
SQL_ID:
CHILD_NUMBER:
SQL_HASH_VALUE:
What was the problem?
What did you do to fix it?
What is the benefit after the fix?
Other stuff that needs saying
This section is a great place to put a review of your analysis. As I go along and figure things out, I drop a bullet item here. That way by the time the analysis is over, there is a record of all the important things that happened.

Initial phase: information acquisition
Business INFO here is important because this ties you to the user who needs the fix. Do not be skimpy. These details will allow you to explain the problem and also the business area that is affected by the problem and this in turn will go a long way to making you look good. If you are using this worksheet to do your SQL Tuning, then you are becoming, or already are, a professional with a rare skill (SQL Tuning) and you want to present that skill in a good light. There is nothing wrong with a little trumpet blowing and these details will let you do that because they will help you give better presentations later. So do not be lazy when it comes to capturing the problem statement in your user’s words, and the business description of what the query is supposed to do. As for the rest of the info, you will not need all of it, but it is so easy to collect now with the scripts, so why not.
Database info
Database experiencing the problem:
Database where testing will be done:
Business info
Current wall clock runtime:
Expected wall clock runtime:
Problem statement in user's words
User’s definition of success
Business description of the query
Other Metrics
Any other relevant notes
TOP-N Report
@showtopcpu11g.sql
One truth of Oracle Relational Database Performance Metrics is and has always been: that 90% of the work being done on a database is being done by < 1% of the queries running on that database. This TOP-N report uses a logarithmic scale based on CPU time to bucket all SQL currently in the cursor cache, by instance, so that you can easily see the top 1% of SQL that is doing 90% of the work. It is also interesting to see the breakdown of SQL by a log scale in order to see the magnitude of this rule.

Before tuning metadata (XML dump via script, zip it, and attach the zip file)
Dump script not ready yet.

Basic query info
Query text
@showsqlbyhash11g.sql

Formatted query
http://www.dpriver.com/pp/sqlformat.htm
Toad

Additional formatted query
Your formatting notes
Your initial review notes
Mistakes
Interesting observations
Your commentary on the underlying data model
Query details
Starting QEP using either explain-plan or load-from-cache or GATHER_PLAN_STATISTICS
@showplan11g.sql
@showplan11gshort.sql
@sowplangps11g.sql
@loadlplanfromcache11g.sql
@loadplanfromhist11g.sql

All Tables referenced by the QEP
@showplantablesunique11g.sql

Describes for all tables referenced by the QEP
@showplandescribes11g.sql

All Indexes for all tables referenced by the QEP
@showplanindexes11g.sql
@showplanindexcolumns11g.sql

All Constraints for all tables referenced by the QEP
@showplanconstraints11g.sql

NUM_ROWS queries (estimated)
@showplannumrows11g.sql

Count queries (actual)
@showplancountqueries11g.sql

Plan cardinality queries (estimated)
@showplancardinality11g.sql

Filter queries (actual)
@showplanfilterqueries11g.sql

FRP query
@showplanfrpspreadsheetcode11g.sql

FRP spreadsheet
Do statistics look up-to-date?
Has initial query workload been accurately estimated?
Is this a PRECISION STYLE or WAREHOUSE STYLE query?
How does this query style compare to what you saw in the QEP (PLAN_TABLE_OUTPUT section and PREDICATE INFORMATION section)?
How long does it take to actually scan all rows in all tables (see elapsed seconds of the FRP report) as compared to the elapsed time of your problem query?
What is your target runtime given the FRP elapsed time and the number of steps in your QEP (the Sanity Check Runtime Estimate) (valid for WAREHOUSE STYLE only)?

Bind Variable History
@showsqlbinds11g.sql
Showsqlbindsbyhash11g.sql

Join Hierarchy or Join Sentence
@showplandrivingtable11g.sql

Performance Related Database Parameters
@showperfparams11g.sql

Query Diagram (optional)

Sanity-check runtime estimate (optional)
The Sanity Check Runtime Estimate is a stupid/silly/totally unreasonable estimate of runtime. Yet it is usually valid for a WAREHOUSE STYLE query. If you are tuning a PRECISION STYLE query then skip this. The idea is to calculate with a grossly easy formula, one possible maximum runtime of your long running query. The formula is (# of lines in the QEP / 2 * the elapsed time (in seconds) of the FRP spreadsheet = maximum runtime of the query. Let us suppose that your four hour query has a QEP with 42 lines in it, and the FRP takes 17 seconds to run. Your calculation would be 42/2*17=357 seconds. So we would expect the query to take somewhere around 6 minutes to do. At first this sounds really outrageous as a way to calculate runtime but in fact what we just did was define a “worst case” scenario and then put a number on it. We said that if we looked at all the data in the query for every base operation in the query plan, how long would that take? Seems dumb, and for really long plans it falls apart. But for a large percentage of QEPs, it works pretty well, and gives you an idea of when you can stop tuning.

Data Model (optional)

Column Statistics (as needed)
@showcolstats.sql

Histograms (as needed)
@showhistogram.sql

Other Useful Scripts
@showowner.sql
@showindexes.sql
@showconstraints.sql
@showmyscanrates.sql
@showmyworkareas.sql

Details of your Analysis (your work goes here)
This is a free form area. Cut/Paste important steps and discoveries as you make them, into this section. Although other sections below may offer locations to put your work, the reality is, it is much easier just to drop everything here. Doing so will allow you to retain the workflow that occurred so that the timeline of discovery can be maintained, which in turn makes it way easier to explain how you arrived at a solution. This will be just as important to you as anyone else when you go back and try to figure out what you did. It will make more sense because reading what happened will flow better. This section can end up many pages long and that is OK. Remember to use the SQLTEXT font in order to line up column headings etc. to make code and data snippets readable.

Use your Discovery Tools to discover the problem
SQL Tuning is mostly about discovery. You have to figure out what is wrong. The book you are reading (I hope you are reading it (Oracle SQL Performance Tuning and Optimization: It’s all about the Cardinalities)), teaches you the following discovery techniques. Use these processes/methods/ideas, and their associated scripts, to ferret out the problems in your PROBLEM QUERY.

Hints are a discovery tool.
Dynamic Sampling is a discovery tool.
Count Queries and Filter Queries are discovery tools.
Reconstruction Queries are a discovery tool.
FRP is a discovery tool.
GATHER_PLAN_STATISTICS is a discovery tool.
2% Rule is a discovery tool.
Query Simplification is a discovery tool.
Every section of the QEP (especially PREDICATE_INFORMATOIN) is a discovery tool.
Data Model Meta-Data is a discovery tool.
Bad database / Good database is a discovery tool.
Concentrate on the most common problems first
SQL Tuning is mostly about fixing a mistake. In almost all cases, your PROBLEM QUERY will be going slowly because there is a mistake of some kind; these mistakes will be one of the types noted below. These are broad categories of problem definitions for sure, but as these notes portray, you will be spending most of your time in two sections of the QEP, validating and reviewing these specific pieces of information. So get comfortable with PLAN_OUTPUT and PREDICATE_INFORMATION and start tuning by looking for Cardinality Errors, FILTER operations, Oracle’s mods to your query, and unusual query constructs. The notes below collectively cover the ideas of (CARDINALITY ERRORS / INEFICIENT FILTERING AND JOINING / CODING MISTAKES / OPTIMIZER LIMITATIONS).

Cardinality Errors (estimates vs. actuals) in initial plan steps of that feed the query, as seen in the PLAN_OUTPUT section of the QEP.
Cardinality Errors (estimates vs. actuals) in Join steps, and the Access Method steps that feed these joins, as seen in the PLAN_OUTPUT section of the QEP.
Cardinality Errors (estimates) in any sequence of steps where a large number of rows (millions?) is reduced to an amazingly small number of rows (1 or 2?).
FILTER operations in PREDICATE_INFORMATION that suggest an indexing problem (missing index, missing columns, DUNSEL columns, column modification, implicit data type conversion, wrong index).
FILTER operations in PREDICATE_INFORMATION that suggest a join problem (hash join across a partial key, nested loops join using a poor index, nested loops join that should have been a hash join).
FILTER operations in PREDICATE_INFORMATION that suggest some other problem.
PREDICATE_INFORMATION showing if and how Oracle modified your query.
Unusual or complex or stupid query constructs. Obvious candidates are: implicit datatype conversion / columns modified by functions / errors with outer-join / complex code that may not be necessary (aggregations, join-backs, etc.).
Use Query Decomposition and Reconstruction to better understand the query and localize its performance problem
SQL Tuning is mostly a DO-ER’S art. That means you have to change things and make stuff execute to figure out what is wrong. Query Decomposition and Reconstruction is the oldest and most useful method for making that happen. It simply means that you look for ways to chop up a query into smaller pieces so that you can judge their influence on the performance of the query independently of the other parts. Any of the concepts noted below are candidates for Query Decomposition and Reconstruction, because they each offer an opportunity to cut out or chop up a query into something smaller, and thus make it easier for you to make headway toward an understanding. To tune SQL, you have to roll up your sleeves and get dirty and this is one way to do it.

Scalar sub-queries.
Function calls from SQL.
UNION/UNION All (mutually exclusive row sets).
Analytic totals.
Existential sub-queries (IN/EXISTS).
Jumping over Database Links.
Long list of Joins.
Anything that looks stupid.
Something you do not understand.
Evaluate the query for simplification
Simplify, Simplify, Simplify! This is another stab a Query Decomposition and Reconstruction. Half of the time, your query will come in parts. Usually only one of its parts is the keeper of the problem you are trying to find. So removing pieces of a query to work on a smaller simpler query, affords you less work, since you will be able to either eliminate parts of the query early on as not having the problem you are looking for, or you will isolate the problem to one of the pieces early on. Either way, you have moved way forward since you now have something much smaller to work with, which leads in particular, to better use of your mental energy, and shorter runtimes for your tests. So get to it, and revisit Query Decomposition and Reconstruction again.

Discovery Phase: The Easy Part is over, now you have to think: (always capture important pieces of your work as you go so you can explain your success to others)
Notice the heavy emphasis here on first making sure that you have a feeling for how the query should behave (its style), and for looking at the query plan as being composed of three major grouping of steps (initial data feeds, joins, other). This is not a coincidence. The style guides you to think a specific way about what should be happening, and looking at the QEP in isolated groups again lets you focus on central ideas. Almost all SQL Tuning problems will manifest in either Initial Plan Steps, or Join Steps, so evaluating the QEP with this emphasis and in this order, is highly useful.
Classify the query style as PRECISION STYLE or WAREHOUSE STYLE using the FRP spreadsheet (or other methods)
What is the basic query style?
Your work goes here
Validate if the query got off to a good start (initial data acquisition steps of the QEP)
Are statistics up-to-date (FRP Spreadsheet)?
Do estimates match actuals (FRP Spreadsheet) (GATHER_PLAN_STATISTICS) (use count/filter/reconstruction queries if necessary)?
Does driving table look reasonable for the query style?
Does join order look reasonable?
Do access methods look reasonable for the query style (2% Rule)?
If access methods use indexes, are these indexes being used correctly?
Initial Data Acquisition Steps of the QEP
Your work goes here
Correct any problems and revalidate
Validate joins and the access methods that feed them
Do estimates match actuals (GATHER_PLAN_STATISTICS) (use count/filter/reconstruction queries if necessary)?
Do access methods look reasonable for the joins they feed?
Do join methods look reasonable for the query style (2% Rule)?
Does any join suffer from a bad cardinality estimate?
Is Hash Join using only a partial key because of inequality predicates?
Is Hash Join OPTIMAL, ONE-PASS, or MULTI-PASS?
Is HASH JOIN using TEMP STORAGE?
Is Nested Loops Join inner table using an index with missing columns?
Is Nested Loops Join inner table using an index with DUNSEL columns?
Is Nested Loops Join inner table using the wrong index?
Join Steps of the QEP
Your work goes here
Correct any problems and revalidate
Validate "everything else" plan steps
Do estimates match actuals (use count/filter/reconstruction queries if necessary)?
“Everything Else” Steps of the QEP
Your work goes here
Correct any problems and revalidate
Validate database parameters (not likely the problem but do it anyway)
If there are multiple environments involved, are there differences between environments?
Do the performance related parameters suggest any ideas?
Database Parameters
Your work goes here
Correct any problems and revalidate
Solution Testing Phase: Evaluate your position
In the end, to fix whatever problem you have found, you will have to change something. The items noted here are the things you will be changing. Testing means just that, testing. You will have to do lots of testing in two ways. First you will need to show that your fix provides a massive performance boost and thus solves the performance problem you have. But second, you may have considerable testing you need to do to demonstrate that you nave not changed the answer being returned by whatever it is you are tuning. This will always require the copying of data, building of before/after result sets for comparison, etc. You must do this testing and show it.

Consider statistics changes (staleness, skew, dependence, defaulting, out-of-bonds, bloat, confusing predicates: (new stats, extended stats, histograms, dynamic sampling))
Consider data model changes (indexes/constraints/data types/partitioning)
Consider query refactoring (better algorithms, simplification, lazy bug fixes)
Consider database parameter changes
Consider advanced features (parallel query, partitioning, partition wise hash join, manual memory management)
Consider solution redesign (row-by-row vs. set based, pre-summarized data, work redistribution)
Consider not a SQL Tuning problem
Your work goes here
Rinse and Repeat
Keep thinking till you get an answer.
Capture your final solution
Description of your solution (also update summary section)
After metadata (XML dump, zip it and attach the zip file)

image2.emf
showsqlall11g.sql

showsqlall11g.sql
define vinst_id = 0

define vsql_id = 0

define vchild_number = 0

define vhash_value = 0

col inst_id new_value vinst_id

col sql_id new_value vsql_id

col child_number new_value vchild_number

col hash_value new_value vhash_value

select sysdate rightnow, name dbname, dbid, &&1 inst_id,'&&2' sql_id,&&3 child_number,&&4 hash_value from v$database

/

select b.user_id, b.username

from gv$sql a

 ,dba_users b

where a.inst_id = &&1 and a.sql_id = '&&2' and a.child_number = &&3

and a.parsing_user_id = b.user_id

/

delete from plan_table;

prompt @loadplanfromcache11g &&vinst_id &&vsql_id &&vchild_number

@loadplanfromcache11g &&vinst_id &&vsql_id &&vchild_number

prompt @showsqlbyhash11g &&vhash_value

@showsqlbyhash11g &&vhash_value

prompt @showplan11gshort

@showplan11gshort

prompt @showplantablesunique11g

@showplantablesunique11g

prompt @showplanfrpspreadsheetcode11g

@showplanfrpspreadsheetcode11g

col col_wrap newline

select distinct 'variable '||replace(name,':')||' '||case when substr(datatype_string,1,3) = 'NUM' then datatype_string

 when substr(datatype_string,1,3) = 'CHA' then datatype_string

 when substr(datatype_string,1,3) = 'VAR' then 'varchar2(30)'

 when substr(datatype_string,1,3) = 'DAT' then 'varchar2(30)'

 else 'TYPE NOT SUPPORTED '||datatype_string

 end col_wrap

 ,'begin '||name||' := '''||

 case when substr(datatype_string,1,3) = 'NUM' then value_string

 when substr(datatype_string,1,3) = 'CHA' then value_string

 when substr(datatype_string,1,3) = 'VAR' then value_string

 when substr(datatype_string,1,3) = 'DAT' then value_string

 else 'null;'

 end

 ||'''; end;' col_wrap,'/' col_wrap

from gv$sql_bind_capture

where inst_id = &&vinst_id

and sql_id = '&&vsql_id'

and child_number = &&vchild_number

and last_captured = (

 select max(LAST_CAPTURED) last_captured

 from gv$sql_bind_capture

 where inst_id = &&vinst_id

 and sql_id = '&&vsql_id'

 and child_number = &&vchild_number

)

/

image3.emf
showtopcpu11g.sql

showtopcpu11g.sql
set linesize 999

set pagesize 50000

set feedback 1

set trimspool on

set trimout on

set doc off

clear breaks

clear computes

-- alter session set nls_date_format = 'dd-mon-rrrr hh24:mi:ss';

select * from v$version

/

select (select dbid from v$database) dbid

 ,(select name from v$database) dbname

 ,inst_id

 ,instance_name

 ,startup_time

 ,round((sysdate-startup_time),1) up_days

 ,round(round((sysdate-startup_time),1)*24) maximum_cache_hours

 ,to_char(sysdate,'dd-mon-rrrr hh24:mi:ss') right_now

from gv$instance

order by inst_id

/

--

-- show how long the database has been up, how many cpus are available, and thus the theoretical CPU available

--

select (select dbid from v$database) dbid

 ,inst_id

 ,(select cpu_count_highwater from sys.v_$license) cpu_count

 ,round((round((sysdate-startup_time),1)*24)*(select cpu_count_highwater from sys.v_$license)) available_cpu_hours

from gv$instance

order by inst_id

/

col pct_total format 990

compute sum of sql_statements on inst_id

compute sum of sql_statements on report

compute sum of db_pct_total on inst_id

compute sum of db_pct_total on report

compute sum of running_consumed_cpu_hours on report

break on inst_id dup skip page on report

--

-- use a logarithmic scale to plot cpu consumtion of all queries in the cache

-- we can use this to zero in on the top consumers

-- notice we exclude PLSQL CALLS but not the sql inside these calls

-- this gives us the true SQL workload

--

select

 (select dbid from v$database) dbid

 ,inst_id

 ,cpu_time_log10

 ,sql_statements

 ,cpu_time_rounded,round(cpu_time) cpu_time

 ,round(100*ratio_to_report(cpu_time) over(partition by inst_id)) inst_pct_total

 ,round(100*ratio_to_report(cpu_time) over()) db_pct_total

 ,round(sum(cpu_time) over (partition by inst_id order by cpu_time_log10)) running_cpu_time

 ,round(round(sum(cpu_time) over (partition by inst_id order by cpu_time_log10))/60/60,2) running_consumed_cpu_hours

from (

 select

 inst_id

 ,trunc(log(10,mycpu_time)) cpu_time_log10

 ,count(*) sql_statements

 ,power(10,trunc(log(10,mycpu_time))) cpu_time_rounded

 ,sum(mycpu_time) cpu_time

 from (

 select inst_id,case when cpu_time <= 0 then 1 else cpu_time end/1000000 mycpu_time

 from gv$sqlarea

 where trim(upper(sql_text)) not like 'BEGIN%'

 and trim(upper(sql_text)) not like 'DECLARE%'

 and trim(upper(sql_text)) not like 'CALL%'

)

 group by trunc(log(10,mycpu_time)),inst_id

) a

order by inst_id,a.cpu_time_log10

/

clear computes

col sql_text clear

col sql_text format a300 trunc

col sql_helper_text format a45

col module format a30 word

col sec_per_exec format 999999990.0

--compute sum of cpu_seconds on inst_id , report

break on inst_id dup skip page

--

-- show use the actual SQL that exceeds some threshhold

-- these are the queries we want to concentrate on

-- configure the last AND predicate to whatever is reasonable based on the above query

--

select (select dbid from v$database) dbid

 ,inst_id

 ,sql_id

 ,child_number

 ,trunc(cpu_time/1000000) cpu_seconds

 ,trunc(elapsed_time/1000000) eplapsed_seconds

 ,executions

 ,round(trunc(elapsed_time/1000000)/decode(executions,0,null,executions),1) sec_per_exec

 ,round((sysdate-to_date(first_load_time,'rrrr-mm-dd/hh24:mi:ss'))*24) hours_in_cache

 ,module

-- ,address

 ,hash_value

 ,(select 'Open' from gv$open_cursor b where b.inst_id = a.inst_id and b.address = a.address and b.hash_value = a.hash_value and rownum = 1) open

/*

 ,case when sql_text like '%SELECT /*+ ORDERED NO_EXPAND USE_HASH%' or sql_text like '%FROM :Q%' or instr(sql_text,'CIV_GB') > 0 or instr(sql_text,'PIV_GB') > 0 or instr(sql_text,'PIV_SSF') > 0 or instr(sql_text,'SWAP_JOIN_INPUTS') > 0 then 'Slave'

 when sql_text like '%SELECT /*+ Q%' then 'Query'

 else (select 'Yes' from gv$sql_plan b where b.inst_id = a.inst_id and b.address = a.address and b.hash_value = a.hash_value and b.child_number = a.child_number and b.other_tag like 'PARALLEL%' and rownum = 1)

 end parallel

*/

 ,'@showsqlall11g '||inst_id||' '||sql_id||' '||child_number||' '||lpad(hash_value,10,' ') sql_helper_text

 ,sql_text

from gv$sql a

where trim(upper(sql_text)) not like 'BEGIN%'

and trim(upper(sql_text)) not like 'DECLARE%'

and trim(upper(sql_text)) not like 'CALL%'

and cpu_time/1000000 >= 1000

--and cpu_time/1000000 >= 100

order by inst_id,cpu_seconds,eplapsed_seconds

/

image4.emf
showsqlbyhash11g.sql

showsqlbyhash11g.sql
col sql_fulltext format a300 word

set long 999999

 select sql_fulltext

 from gv$sql

 where hash_value = &&1

 and rownum = 1

/

image5.emf
loadplanfromhist11g.sql

loadplanfromhist11g.sql
--

-- load qep information into the plan_table from DBA_HIST_SQL_PLAN (history of monitored plans)

--

-- requires you to identify the sql_id and date of when you want your plan

-- does a bob barker lookup based on the date, for the sql_id supplied

-- note use of +1 second to the date in order to account for the millseconds in the timestamp

-- note also the use of a specific format mask 'rrrrmmddhh24miss'

-- often you will need to guess about the time unless you know it from some other place

--

-- parameter 1 = sql_id

-- parameter 2 = timestamp (in the right format)

--

-- @loadplanfromhist11g.sql 6zcb0r0rch025 2014080212:10:03

--

-- then use the normal plan_table scripts to get the goodness

--

-- @showplan11g

-- @showplandatamodel11g

-- ...

--

insert into plan_table

(

 PLAN_ID

,TIMESTAMP

,REMARKS

,OPERATION

,OPTIONS

,OBJECT_NODE

,OBJECT_OWNER

,OBJECT_NAME

,OBJECT_ALIAS

,object_instance

,OBJECT_TYPE

,OPTIMIZER

,SEARCH_COLUMNS

,ID

,PARENT_ID

,DEPTH

,POSITION

,COST

,CARDINALITY

,BYTES

,OTHER_TAG

,PARTITION_START

,PARTITION_STOP

,PARTITION_ID

,OTHER

,OTHER_XML

,DISTRIBUTION

,CPU_COST

,IO_COST

,TEMP_SPACE

,ACCESS_PREDICATES

,FILTER_PREDICATES

,PROJECTION

,TIME

,QBLOCK_NAME

)

select

 nvl((select max(plan_id) from plan_table),0)+1 plan_id

,TIMESTAMP

,REMARKS

,OPERATION

,OPTIONS

,OBJECT_NODE

,OBJECT_OWNER

,OBJECT_NAME

,OBJECT_ALIAS

,OBJECT# object_instance

,OBJECT_TYPE

,OPTIMIZER

,SEARCH_COLUMNS

,ID

,PARENT_ID

,DEPTH

,POSITION

,COST

,CARDINALITY

,BYTES

,OTHER_TAG

,PARTITION_START

,PARTITION_STOP

,PARTITION_ID

,OTHER

,OTHER_XML

,DISTRIBUTION

,CPU_COST

,IO_COST

,TEMP_SPACE

,ACCESS_PREDICATES

,FILTER_PREDICATES

,PROJECTION

,TIME

,QBLOCK_NAME

from dba_hist_sql_plan

where sql_id = '&&1'

and timestamp = (

 select max(timestamp)

 from dba_hist_sql_plan

 where sql_id = '&&1'

 and timestamp <= to_date('&&2','rrrrmmddhh24miss')+1/24/60/60

)

/

image6.emf
showplan11g.sql

showplan11g.sql
select * from table(dbms_xplan.display('PLAN_TABLE',NULL,'ADVANCED'));

image7.emf
showplan11gshort.sql

showplan11gshort.sql
select * from table(dbms_xplan.display('PLAN_TABLE',NULL,'ADVANCED -projection -outline -alias'));

image8.emf
showplangps11g.sql

showplangps11g.sql
SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

image9.emf
loadplanfromcache11g.sql

loadplanfromcache11g.sql
--

-- load qep information into the plan_table from gv$sql_plan

--

-- requires you to identify the inst_id,sql_id,child_number first

--

-- parameter 1 = inst_id

-- parameter 2 = sql_id

-- parameter 3 = child_number

--

-- @loadplanfromcache11g.sql 1 6zcb0r0rch025 0

--

-- then use the normal plan_table scripts to get the goodness

--

-- @showplan11g

-- @showplandatamodel11g

-- ...

--

insert into plan_table

(

 PLAN_ID

,TIMESTAMP

,REMARKS

,OPERATION

,OPTIONS

,OBJECT_NODE

,OBJECT_OWNER

,OBJECT_NAME

,OBJECT_ALIAS

,object_instance

,OBJECT_TYPE

,OPTIMIZER

,SEARCH_COLUMNS

,ID

,PARENT_ID

,DEPTH

,POSITION

,COST

,CARDINALITY

,BYTES

,OTHER_TAG

,PARTITION_START

,PARTITION_STOP

,PARTITION_ID

,OTHER

,OTHER_XML

,DISTRIBUTION

,CPU_COST

,IO_COST

,TEMP_SPACE

,ACCESS_PREDICATES

,FILTER_PREDICATES

,PROJECTION

,TIME

,QBLOCK_NAME

)

select

 nvl((select max(plan_id) from plan_table),0)+1 plan_id

,TIMESTAMP

,REMARKS

,OPERATION

,OPTIONS

,OBJECT_NODE

,OBJECT_OWNER

,OBJECT_NAME

,OBJECT_ALIAS

,OBJECT# object_instance

,OBJECT_TYPE

,OPTIMIZER

,SEARCH_COLUMNS

,ID

,PARENT_ID

,DEPTH

,POSITION

,COST

,CARDINALITY

,BYTES

,OTHER_TAG

,PARTITION_START

,PARTITION_STOP

,PARTITION_ID

,OTHER

,OTHER_XML

,DISTRIBUTION

,CPU_COST

,IO_COST

,TEMP_SPACE

,ACCESS_PREDICATES

,FILTER_PREDICATES

,PROJECTION

,TIME

,QBLOCK_NAME

from gv$sql_plan

where inst_id = &&1

and sql_id = '&&2'

and child_number = &&3

/

image10.emf
showplantablesunique11g.sql

showplantablesunique11g.sql
with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

select object_owner,object_name

from my_plan_table

where object_type = 'TABLE'

union

select b.table_owner,b.table_name

from my_plan_table a

 ,dba_indexes b

where a.object_type like 'INDEX%'

and a.object_owner = b.owner

and a.object_name = b.index_name

order by 1,2

/

image11.emf
showplandescribes11g.sql

showplandescribes11g.sql
set echo off

set verify off

set timing off

set time off

set feedback off

set pagesize 0

spool sqlplantablesunqiuedescribes.sql

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 ,table_list as (

 select object_owner,object_name

 from my_plan_table

 where object_type = 'TABLE'

 union

 select b.table_owner,b.table_name

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

 order by 1,2

)

select 'desc '||object_owner||'.'||object_name

from table_list

/

spool off

set linesize 60

@sqlplantablesunqiuedescribes.sql

set linesize 999

set verify on

set timing on

set time on

set feedback on

set pagesize 999

set echo on

image12.emf
showplanindexes11g.sql

showplanindexes11g.sql
with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select object_owner table_owner,object_name table_name,replace(object_alias,'@',' @ ') table_alias

 from my_plan_table

 where object_type = 'TABLE'

 union

 select b.table_owner,b.table_name,replace(a.object_alias,'@',' @ ') table__alias

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

select distinct a.table_owner,a.table_name,b.index_name,b.owner index_owner

from dba_indexes b

 ,table_list a

where b.table_owner = a.table_owner

and b.table_name = a.table_name

order by 1,2,3,4

/

image13.emf
showplanindexcolumns11g.sql

showplanindexcolumns11g.sql
col column_name format a30

break on table_owner on table_name on index_owner on index_name skip 1

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select object_owner table_owner,object_name table_name,replace(object_alias,'@',' @ ') table_alias

 from my_plan_table

 where object_type = 'TABLE'

 union

 select b.table_owner,b.table_name,replace(a.object_alias,'@',' @ ') table__alias

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

select table_owner,table_name,index_owner,index_name,column_name

,(select index_type from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) index_type

,(select uniqueness from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) uniqueness

,(select tablespace_name from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) tablespace_name

from dba_ind_columns a

where (table_owner,table_name) in (select table_owner,table_name from table_list)

order by 1,2,3,4,column_position

/

image14.emf
showplanconstraints11g.sql

showplanconstraints11g.sql
break on constraint_name skip 1 on parent_table_name

col column_name format a30

col sort_order noprint

col select_id noprint

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 ,plan_tables as (

 select id,object_owner owner,object_name table_name,replace(object_alias,'@',' @ ') object_alias

 from my_plan_table

 where object_type = 'TABLE'

 union

 select id,b.table_owner,b.table_name,replace(object_alias,'@',' @ ') object_alias

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

select *

from (

select a.owner,a.table_name,a.constraint_name,a.constraint_type,c.column_name,b.owner parent_child_owner,b.table_name parent_child_table_name,b.constraint_type parent_constraint_type,a.index_name,decode(a.constraint_type,'P',1,'U',2) sort_order,1 select_id

from dba_constraints a

 ,dba_constraints b

 ,dba_cons_columns c

where (a.owner,a.table_name) in (select owner,table_name from plan_tables)

and a.r_owner = b.owner(+)

and a.r_constraint_name = b.constraint_name(+)

and a.owner = c.owner

and a.constraint_name = c.constraint_name

and a.constraint_type != 'C'

and (b.owner is null and a.constraint_type in ('P','U') or (b.owner,b.table_name) in (select owner,table_name from plan_tables))

union

select a.owner,a.table_name,a.constraint_name,a.constraint_type,c.column_name,b.owner parent_child_owner,b.table_name parent_child_table_name,b.constraint_type parent_constraint_type,a.index_name,decode(a.constraint_type,'P',1,'U',2) sort_order,2 select_id

from dba_constraints a

 ,dba_constraints b

 ,dba_cons_columns c

where (a.owner,a.table_name) in (select owner,table_name from plan_tables)

and b.constraint_type in ('P','U')

and a.r_owner = b.owner

and a.r_constraint_name = b.constraint_name

and b.table_name != a.table_name

and a.owner = c.owner

and a.constraint_name = c.constraint_name

and (b.owner,b.table_name) in (select owner,table_name from plan_tables)

)

order by select_id,sort_order,owner,table_name,constraint_name,column_name

/

image15.emf
showplannumrows11g.sql

showplannumrows11g.sql
with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select object_owner owner,object_name table_name

 from my_plan_table

 where object_type = 'TABLE'

 union

 select b.table_owner,b.table_name

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

select dba_tables.num_rows,dba_tables.owner,dba_tables.table_name

from dba_tables

 ,table_list

where table_list.owner = dba_tables.owner

and table_list.table_name = dba_tables.table_name

order by 2,3

/

image16.emf
showplancountqueries11g.sql

showplancountqueries11g.sql
with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

select count_query_sqltext||decode(lead(count_query_sqltext) over (order by object_owner,object_name),null,';',' union all') sql_text

from (

 select distinct object_owner,object_name,'select count(*) rowcount,'''||object_owner||''' owner,'''||object_name||''' table_name from '||object_owner||'.'||object_name count_query_sqltext

 from (

 select id,object_owner,object_name,replace(object_alias,'@',' @ ') object_alias

 from my_plan_table

 where object_type = 'TABLE'

 union

 select id,b.table_owner,b.table_name,replace(object_alias,'@',' @ ') object_alias

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

 order by object_owner,object_name

)

/

image17.emf
showplancardinality11g.sql

showplancardinality11g.sql
col alias format a35

col index_name format a30

col index_owner format a30

clear breaks

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select id,cardinality

 ,object_name table_name,replace(object_alias,'@',' @ ') alias,object_owner table_owner

 ,cast(null as varchar2(30)) index_name,cast(null as varchar2(30)) index_owner

 from my_plan_table

 where object_type = 'TABLE'

 union

 select a.id,a.cardinality,b.table_name,replace(object_alias,'@',' @ ') alias,b.table_owner,b.index_name,b.owner index_owner

 from my_plan_table a

 ,dba_indexes b

 where a.object_type like 'INDEX%'

 and a.object_owner = b.owner

 and a.object_name = b.index_name

)

select *

from table_list

order by 1

/

image18.emf
showplanfilterqueries11g.sql

showplanfilterqueries11g.sql
set linesize 165

col sqltext format a165 word

clear breaks

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select 'TABLE' plan_object_type,a.id,a.object_owner table_owner,a.object_name table_name,a.access_predicates,a.filter_predicates,a.object_alias,a.cardinality

 from my_plan_table a

 ,dba_tables b

 where b.owner = a.object_owner

 and b.table_name = a.object_name

 union all

 select 'INDEX' plan_object_type,a.id,b.table_owner,b.table_name object_name,a.access_predicates,a.filter_predicates,a.object_alias,a.cardinality

 from my_plan_table a

 ,dba_indexes b

 where b.owner = a.object_owner

 and b.index_name = a.object_name

)

--

-- given the raw data for tables, modify the predicates so that we only see predicates for constant tests, no join predicates

-- join predicates are not used in FRP analysis

-- this is a bit of a hack as I never took the COMPILER and PARSER classes in school, basically this means it is almost 100%right

--

 , modified_table_list as (

 select id,table_owner,table_name,object_alias,cardinality,plan_object_type

 ,case when

 instr(replace(access_predicates,'"="'),'=') > 0 or

 instr(replace(access_predicates,'">"'),'>') > 0 or

 instr(replace(access_predicates,'"<"'),'<') > 0 or

 instr(replace(access_predicates,'">="'),'>=') > 0 or

 instr(replace(access_predicates,'"<="'),'<=') > 0 or

 instr(replace(access_predicates,'"!="'),'!=') > 0 or

 instr(replace(access_predicates,'"<>"'),'<>') > 0 or

 instr(replace(access_predicates,'" LIKE "'),' LIKE ') > 0 or

 instr(replace(access_predicates,'" BETWEEN "'),' BETWEEN ') > 0 or

 instr(replace(access_predicates,'" IN ("'),' IN (') > 0 or

 instr(replace(access_predicates,'" NOT LIKE "'),' NOT LIKE ') > 0 or

 instr(replace(access_predicates,'" NOT BETWEEN "'),' NOT BETWEEN ') > 0 or

 instr(replace(access_predicates,'" NOT IN ("'),' NOT IN (') > 0

 then access_predicates

 end access_predicates

 ,case when

 instr(replace(filter_predicates,'"="'),'=') > 0 or

 instr(replace(filter_predicates,'">"'),'>') > 0 or

 instr(replace(filter_predicates,'"<"'),'<') > 0 or

 instr(replace(filter_predicates,'">="'),'>=') > 0 or

 instr(replace(filter_predicates,'"<="'),'<=') > 0 or

 instr(replace(filter_predicates,'"!="'),'!=') > 0 or

 instr(replace(filter_predicates,'"<>"'),'<>') > 0 or

 instr(replace(filter_predicates,'" LIKE "'),' LIKE ') > 0 or

 instr(replace(filter_predicates,'" BETWEEN "'),' BETWEEN ') > 0 or

 instr(replace(filter_predicates,'" IN ("'),' IN (') > 0 or

 instr(replace(filter_predicates,'" NOT LIKE "'),' NOT LIKE ') > 0 or

 instr(replace(filter_predicates,'" NOT BETWEEN "'),' NOT BETWEEN ') > 0 or

 instr(replace(filter_predicates,'" NOT IN ("'),' NOT IN (') > 0

 then filter_predicates

 end filter_predicates

 from table_list

)

--

-- do the final massaging of the raw data

-- in particular, get the true alias for each table, get data from dba_tables, generate an actual predicate we can test with

--

 , plan_info as

 (

 select

 id

 , table_owner

 , table_name

 , substr(object_alias,1,instr(object_alias,'@')-1) table_alias

 , cardinality

 , (select num_rows from dba_tables where dba_tables.owner = modified_table_list.table_owner and dba_tables.table_name = modified_table_list.table_name) num_rows

 , case

 when access_predicates is null and filter_predicates is null then null

 when access_predicates is null and filter_predicates is not null then filter_predicates

 when access_predicates is not null and filter_predicates is null then access_predicates

 when access_predicates is not null and filter_predicates is not null and access_predicates != filter_predicates then access_predicates||' and '||filter_predicates

 else access_predicates

 end predicate

 from modified_table_list

)

--

-- look for places where indexes are accessed followed by table acces by rowid

-- combine the two lines into one

--

 , combined_plan_info as (

 select plan_info.table_owner,plan_info.table_name,plan_info.table_alias,plan_info.num_rows

 ,min(plan_info.id) id

 ,max(plan_info.cardinality) cardinality

 ,listagg(plan_info.predicate,' and ') within group (order by id) predicate

 from plan_info

 group by plan_info.table_owner,plan_info.table_name,plan_info.table_alias,plan_info.num_rows

)

select 'select count(*) filtered_rowcount,'''||table_owner||''' table_owner,'''||table_name||''' table_name,'''||table_alias||''' table_alias from '||table_owner||'.'||table_name||' '||table_alias||decode(predicate,null,null,' where '||predicate)

 ||decode(lead(table_name) over (order by table_owner,table_name),null,' ;',' union all') sqltext

from combined_plan_info

order by table_owner,table_name

/

image19.emf
showplanfrpspreadsheetcode11g.sql

showplanfrpspreadsheetcode11g.sql
col actual_frp format 999.0

col plan_frp format 999.0

col select_id noprint

col sqltext clear

with

--

-- generates a FRP SPREADSHEET query using plan table information for an EXPLAINED query

--

--

-- THIS CODE IS DEPENDENT UPON WHAT IS IN THE PLAN TABLE

-- among other things this means that if oracle changes the contents of this table, this query may stop working

--

-- several possible flaws can prevent this code from generating an executable SQL SELECT

--

-- 1. bind variables: the corresponding select here must be modified to group on the bind column and select an round(avg(count(*))

-- 2. join predicates: if any are used along with constant tests in a plan step, they must be manaully edited out of the correspoding select here

-- 3. packaged functions: column=functioncall predicates can be dropped in which case filtered_cardinality will be affected, check it if you query has these

-- 4. outer join is not supported. These should be removed. If the case expression becomes empty use count(*).

-- 5. correlated subqueries are confusing. This is because the appear as queries with bind variables. Test like #1 but ingnore their results.

--

--

-- get raw_data from the plan_table for each table reference in the query plan

-- a table may be used more than once in which case there will be more than one row returned here

-- this is managed by using ID so that we know the plan step the table reference refers to

-- note that some plan steps may be index lookups so in this section we translate the index to its underlying table

--

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

 , table_list as (

 select a.id,a.object_owner table_owner,a.object_name table_name,a.access_predicates,a.filter_predicates,a.object_alias,a.cardinality

 from my_plan_table a

 ,dba_tables b

 where b.owner = a.object_owner

 and b.table_name = a.object_name

 union all

 select a.id,b.table_owner,b.table_name object_name,a.access_predicates,a.filter_predicates,a.object_alias,a.cardinality

 from my_plan_table a

 ,dba_indexes b

 where b.owner = a.object_owner

 and b.index_name = a.object_name

)

--

-- given the raw data for tables, modify the predicates so that we only see predicates for constant tests, no join predicates

-- join predicates are not used in FRP analysis

-- this is a bit of a hack as I never took the COMPILER and PARSER classes in school, basically this means it is almost 100%right

-- what we call "close enough for jazz"

--

 , modified_table_list as (

 select id,table_owner,table_name,object_alias,cardinality

 ,case when

 instr(replace(access_predicates,'"="'),'=') > 0 or

 instr(replace(access_predicates,'">"'),'>') > 0 or

 instr(replace(access_predicates,'"<"'),'<') > 0 or

 instr(replace(access_predicates,'">="'),'>=') > 0 or

 instr(replace(access_predicates,'"<="'),'<=') > 0 or

 instr(replace(access_predicates,'"!="'),'!=') > 0 or

 instr(replace(access_predicates,'"<>"'),'<>') > 0 or

 instr(replace(access_predicates,'" LIKE "'),' LIKE ') > 0 or

 instr(replace(access_predicates,'" BETWEEN "'),' BETWEEN ') > 0 or

 instr(replace(access_predicates,'" IN ("'),' IN (') > 0 or

 instr(replace(access_predicates,'" NOT LIKE "'),' NOT LIKE ') > 0 or

 instr(replace(access_predicates,'" NOT BETWEEN "'),' NOT BETWEEN ') > 0 or

 instr(replace(access_predicates,'" NOT IN ("'),' NOT IN (') > 0

 then access_predicates

 end access_predicates

 ,case when

 instr(replace(filter_predicates,'"="'),'=') > 0 or

 instr(replace(filter_predicates,'">"'),'>') > 0 or

 instr(replace(filter_predicates,'"<"'),'<') > 0 or

 instr(replace(filter_predicates,'">="'),'>=') > 0 or

 instr(replace(filter_predicates,'"<="'),'<=') > 0 or

 instr(replace(filter_predicates,'"!="'),'!=') > 0 or

 instr(replace(filter_predicates,'"<>"'),'<>') > 0 or

 instr(replace(filter_predicates,'" LIKE "'),' LIKE ') > 0 or

 instr(replace(filter_predicates,'" BETWEEN "'),' BETWEEN ') > 0 or

 instr(replace(filter_predicates,'" IN ("'),' IN (') > 0 or

 instr(replace(filter_predicates,'" NOT LIKE "'),' NOT LIKE ') > 0 or

 instr(replace(filter_predicates,'" NOT BETWEEN "'),' NOT BETWEEN ') > 0 or

 instr(replace(filter_predicates,'" NOT IN ("'),' NOT IN (') > 0

 then filter_predicates

 end filter_predicates

 from table_list

)

--

-- do the final massaging of the raw data

-- in particular, get the true alias for each table, get data from dba_tables, generate an actual predicate we can test with

--

 , plan_info as

 (

 select

 id

 , table_owner

 , table_name

 , substr(object_alias,1,instr(object_alias,'@')-1) table_alias

 , cardinality

 , (select num_rows from dba_tables where dba_tables.owner = modified_table_list.table_owner and dba_tables.table_name = modified_table_list.table_name) num_rows

 , case

 when access_predicates is null and filter_predicates is null then null

 when access_predicates is null and filter_predicates is not null then filter_predicates

 when access_predicates is not null and filter_predicates is null then access_predicates

 when access_predicates is not null and filter_predicates is not null and access_predicates != filter_predicates then access_predicates||' and '||filter_predicates

 else access_predicates

 end predicate

 from modified_table_list

)

--

-- look for places where indexes are accessed followed by table acces by rowid

-- combine the two lines into one

--

 , combined_plan_info as (

 select plan_info.table_owner,plan_info.table_name,plan_info.table_alias,plan_info.cardinality,plan_info.num_rows

 ,min(plan_info.id) id

 ,listagg(plan_info.predicate,' and ') within group (order by id) predicate

 from plan_info

 group by plan_info.table_owner,plan_info.table_name,plan_info.table_alias,plan_info.cardinality,plan_info.num_rows

)

--

-- give us a SQL statement that for each table reference, both counts all rows and counts only rows that pass the filter predictes

-- then do the math needed to generate an FRP SPREADSHEET

-- this version (4) only scans each table once instead of twice like the old versions

--

select 1 select_id,'with' sqltext from dual union all

select 2 select_id,' frp_data as (' from dual union all

select 3 select_id,' select '''||lpad(id,5,' ')||''' id,'''||table_owner||''' table_owner,'''||table_name||''' table_name,'''||table_alias||''' table_alias,'||nvl(to_char(num_rows),'cast(null as number)')||' num_rows,count(*) rowcount,'||case when cardinality is null then 'cast(null as integer)' else to_char(cardinality) end||' cardinality,'||decode(predicate,null,'cast(null as number)','count(case when '||predicate||' then 1 end)')||' filtered_cardinality from '||table_owner||'.'||table_name||' '||table_alias||' union all'

 from combined_plan_info

 union all

select 4 select_id,' select null,null,null,null,null,null,null,null from dual' from dual union all

select 5 select_id,')' from dual union all

select 6 select_id,'select frp_data.*,round(frp_data.filtered_cardinality/case when frp_data.rowcount = 0 then cast(null as number) else frp_data.rowcount end*100,1) actual_frp,decode(frp_data.filtered_cardinality,null,cast(null as number),round(frp_data.cardinality/case when frp_data.num_rows = 0 then cast(null as number) else frp_data.num_rows end*100,1)) plan_frp' from dual union all

select 7 select_id,'from frp_data' from dual union all

select 8 select_id,'where id is not null' from dual union all

select 9 select_id,'order by frp_data.id' from dual union all

select 10 select_id,'/' from dual

order by 1

/

image20.emf
showsqlbindsbyhash11g.sql

showsqlbindsbyhash11g.sql
col VALUE_STRING format a30

col VALUE_ANYDATA noprint

select * from gv$sql_bind_capture where hash_value = &&1 order by inst_id,child_number,position

/

image21.emf
showsqlbinds11g.sql

showsqlbinds11g.sql
col col_wrap newline

col name format a10

select distinct 'variable '||replace(name,':')||' '||case when substr(datatype_string,1,3) = 'NUM' then datatype_string

 when substr(datatype_string,1,3) = 'CHA' then datatype_string

 when substr(datatype_string,1,3) = 'VAR' then 'varchar2(30)'

 when substr(datatype_string,1,3) = 'DAT' then 'varchar2(30)'

 else 'TYPE NOT SUPPORTED '||datatype_string

 end col_wrap

 ,'begin '||name||' := '''||

 case when substr(datatype_string,1,3) = 'NUM' then value_string

 when substr(datatype_string,1,3) = 'CHA' then value_string

 when substr(datatype_string,1,3) = 'VAR' then value_string

 when substr(datatype_string,1,3) = 'DAT' then value_string

 else 'null;'

 end

 ||'''; end;' col_wrap,'/' col_wrap

from gv$sql_bind_capture

where inst_id = &&1

and sql_id = '&&2'

and child_number = &&3

and last_captured = (

 select max(LAST_CAPTURED) last_captured

 from gv$sql_bind_capture

 where inst_id = &&1

 and sql_id = '&&2'

 and child_number = &&3

)

order by 1

/

col VALUE_STRING format a30

col VALUE_ANYDATA noprint

col address noprint

col hash_value noprint

col child_address noprint

select *

from gv$sql_bind_capture

where inst_id = &&1

and sql_id = '&&2'

and child_number = &&3

order by inst_id,sql_id,child_number,position

/

image22.emf
showplandrivingtable11g.sql

showplandrivingtable11g.sql
set linesize 999

col driving_table format a61

col driving_table_alias format a30

col leading_hint format a300

with

 my_plan_table as (

 select *

 from plan_table

 where plan_id = (select max(plan_id) from plan_table)

)

select id

 ,object_owner||'.'||object_name driving_table

 ,driving_table_alias

 ,object_type

 ,leading_hint

from (

 select substr(replace(leading_hint,')',' ')

 ,instr(replace(leading_hint,')',' '),' ',1,1)+1

 ,instr(replace(leading_hint,')',' '),' ',1,2)-instr(replace(leading_hint,')',' '),' ',1,1)-1) driving_table_alias

 ,leading_hint

 from (

 select substr(c1,1,instr(c1,')')) leading_hint

 from (

 select substr(other_xml,instr(other_xml,'LEADING(')) c1

 from my_plan_table

 where other_xml is not null

)

)

) x

 ,my_plan_table

where my_plan_table.object_alias = trim(replace(to_char(substr(x.driving_table_alias,1,4000)),'"'))

/

image23.emf
showperfparams.sql

showperfparams.sql
col value format a30

col name format a40

col keyword format a10

break on keyword skip 1 dup

select decode(sign(instr(name,'dyn')),1,'dynamic'

 ,decode(sign(instr(name,'size')),1,'size'

 ,decode(sign(instr(name,'pga')),1,'pga'

 ,decode(sign(instr(name,'index')),1,'index'

 ,decode(sign(instr(name,'cpu')),1,'cpu'

 ,decode(sign(instr(name,'mode')),1,'mode'

 ,decode(sign(instr(name,'optimizer')),1,'optimizer'

 ,decode(sign(instr(name,'parallel')),1,'parallel'

 ,decode(sign(instr(name,'rewrite')),1,'rewrite'

 ,decode(sign(instr(name,'statistics')),1,'statistics'

)))))))))) keyword

 ,name

 ,value

 ,isdefault

from v$parameter

where (

 name like '%dynamic%' or

 name like '%pga%' or

 name like '%area%' or

 name like '%index%' or

 name like '%cpu%' or

 name like '%mode%' or

 name like '%optimizer%' or

 name like 'parallel%' or

 name like '%rewrite%' or

 name like '%statistics%'

)

order by keyword,name

/

image24.emf
showcolstats.sql

showcolstats.sql
/*

CREATE OR replace FUNCTION kev_raw_to_string (rawval RAW, TYPE VARCHAR2) RETURN VARCHAR2

IS

 cn NUMBER;

 cv VARCHAR2(32);

 cd DATE;

 cnv NVARCHAR2(32);

 cr ROWID;

 cc CHAR(32);

BEGIN

 IF (TYPE = 'NUMBER') THEN

 dbms_stats.Convert_raw_value(rawval, cn);

 RETURN '"'||cn||'"';

 ELSIF (TYPE = 'VARCHAR2') THEN

 dbms_stats.Convert_raw_value(rawval, cv);

 RETURN '"'||cv||'"';

 ELSIF (TYPE = 'DATE') THEN

 dbms_stats.Convert_raw_value(rawval, cd);

 RETURN '"'||to_char(cd,'dd-mon-rrrr.hh24:mi:ss')||'"';

 ELSIF (TYPE = 'NVARCHAR2') THEN

 dbms_stats.Convert_raw_value(rawval, cnv);

 RETURN '"'||cnv||'"';

 ELSIF (TYPE = 'ROWID') THEN

 dbms_stats.Convert_raw_value(rawval, cr);

 RETURN '"'||cnv||'"';

 ELSIF (TYPE = 'CHAR') THEN

 dbms_stats.Convert_raw_value(rawval, cc);

 RETURN '"'||cc||'"';

 ELSE

 RETURN '"UNSUPPORTED DATA_TYPE"';

 END IF;

exception when others then

 return '--- conversion error ---';

END;

/

*/

col low_value format a30

col high_value format a30

col last_analyzed format a22

--select table_name,column_name, num_distinct, num_nulls, num_buckets, sample_size,last_analyzed

select

 OWNER

, TABLE_NAME

, COLUMN_NAME

, NUM_DISTINCT

, NUM_NULLS

, NUM_BUCKETS

, SAMPLE_SIZE

, AVG_COL_LEN

, DENSITY

, TO_CHAR(LAST_ANALYZED,'dd-mon-rrrr.hh24:mi:ss') last_analyzed

, GLOBAL_STATS

, USER_STATS

, km21378.kev_raw_to_string (LOW_VALUE,(select data_type from dba_tab_columns b where b.owner = a.owner and b.table_name = a.table_name and b.column_name = a.column_name)) LOW_VALUE

, km21378.kev_raw_to_string (HIGH_VALUE,(select data_type from dba_tab_columns b where b.owner = a.owner and b.table_name = a.table_name and b.column_name = a.column_name)) HIGH_VALUE

from dba_tab_col_statistics a

where (owner,table_name) in

(

 (upper('&&1'),upper('&&2'))

)

--and (column_name = 'ROW_TERM_DATE$' or num_buckets > 1)

order by TABLE_NAME,COLUMN_NAME

/

image25.emf
showhistogram.sql

showhistogram.sql
COLUMN endpoint_actual_value noprint

COLUMN actual_value ON FORMAT a30

col column format a30

select b.*

 ,round(ratio_to_report(cardinality) over(partition by owner,table_name,column_name)*100) pct

 ,endpoint_actual_value actual_value

from (

select a.*

 ,ENDPOINT_NUMBER-nvl(lag(ENDPOINT_NUMBER) over(partition by owner,table_name,column_name order by endpoint_number),0) cardinality

from dba_histograms a

where owner = upper('&&1')

and table_name = upper('&&2')

and column_name = upper('&&3')

) b

order by owner,table_name,column_name,ENDPOINT_NUMBER

/

image26.emf
showmyworkareas.sql

showmyworkareas.sql
select * from gv$sql_workarea_active where (inst_id,sid) in (select inst_id,sid from gv$session where username = user);

image27.emf
showmyscanrates.sql

showmyscanrates.sql
--clear breaks

--clear computes

--clear columns

col time_remaining head 'Seconds|Remaining'

col scanned_blocks head 'Scanned Blocks|or Indexes'

col all_blocks head 'All Blocks|or Indexes'

col blocks_remaining head 'Blocks|or Indexes|Remaining' noprint

col opname format a16

col target format a40

col username format a15

col MB_per_Second form 990.0 head 'MB/s'

col pct_scanned head '%Scanned' format 990.00

col predicted_runtime_seconds head 'Estmd.|Runtime|Seconds'

col total_blocks head 'Total|Blocks|or|Indexes'

col sid format 99990

col block_size format 99990 head 'Block|Size'

col id_passes_temp format a25

break on inst_id skip page

with

 scan_data as (

 select

 to_number(

 substr(a.message

 ,instr(a.message,': ',1,2)+2

 ,instr(a.message,' out of ',1,1)-instr(a.message,': ',1,2)-1

)

)

 / to_number(

 substr(a.message

 ,instr(a.message,' out of ',1,1)+8

 ,instr(a.message,' ',instr(a.message,' out of ',1,1)+8)-instr(a.message,' out of ',1,1)-7

)

) *100 pct_scanned

 , to_number(

 substr(a.message

 ,instr(a.message,' out of ',1,1)+8

 ,instr(a.message,' ',instr(a.message,' out of ',1,1)+8)-instr(a.message,' out of ',1,1)-7

)

)

 - to_number(

 substr(a.message

 ,instr(a.message,': ',1,2)+2

 ,instr(a.message,' out of ',1,1)-instr(a.message,': ',1,2)-1

)

) blocks_remaining

 , a.time_remaining

 , a.opname

 , to_number(b.value) block_size

 , a.target

 , a.sid

 , a.inst_id

 , a.username

 , a.sql_hash_value

 from (

 select

 replace(gv$session_longops.message,'RMAN:','RMAN') message

 , gv$session_longops.time_remaining

 , gv$session_longops.opname

 , nvl(gv$session_longops.target,replace(gv$session_longops.target_desc,'Table ')) target

 , gv$session_longops.sid

 , gv$session_longops.inst_id

 , gv$session_longops.username

 , gv$session_longops.sql_hash_value

 from gv$session_longops

 , gv$session

 where gv$session_longops.sid = gv$session.sid

 and gv$session_longops.inst_id = gv$session.inst_id

 and gv$session_longops.sid = gv$session.sid

 and gv$session_longops.serial# = gv$session.serial#

 and gv$session_longops.time_remaining > 0

and gv$session_longops.username = user

) a

 ,(select value from gv$parameter where name = 'db_block_size' and rownum = 1) b

)

select

 scan_data.inst_id

 , round(blocks_remaining*block_size/1024/1024/time_remaining,1) MB_per_Second

 , scan_data.time_remaining

 , round(time_remaining/(1-pct_scanned/100)) predicted_runtime_seconds

 , scan_data.pct_scanned

 , scan_data.blocks_remaining

 , round(blocks_remaining/(1-pct_scanned/100)) total_blocks

 , scan_data.opname

 , scan_data.BLOCK_SIZE

 , scan_data.target

 , (

 select

 max(operation_id)||':'||DECODE(MAX(NUMBER_PASSES),0,'OPTIMAL',1,'ONE-PASS',NULL,NULL,'MULTI-PASS('||max(number_passes)||')')||DECODE(max(TEMPSEG_SIZE),NULL,NULL,','||round(max(TEMPSEG_SIZE)/1024/1024)||'M')

 from gv$sql_workarea_active

 where gv$sql_workarea_active.sid = scan_data.sid

 and gv$sql_workarea_active.inst_id = scan_data.inst_id

-- and scan_data.opname in ('Hash Join','Sort Output')

-- and gv$sql_workarea_active.OPERATION_TYPE in ('HASH-JOIN','SORT','WINDOW (SORT)','GROUP BY (SORT)')

) id_passes_temp

 , scan_data.sid

 , scan_data.username

 , scan_data.sql_hash_value

from scan_data

order by inst_id,username,sid,time_remaining

/

image28.emf
showowner.sql

showowner.sql
col object_name format a30

col db_link format a30

select object_type,owner,object_name,status,(select db_link from dba_synonyms b where b.synonym_name = a.object_name and b.owner = a.owner and b.db_link is not null) db_link

,owner||'.'||object_name||case when object_type = 'SYNONYM' then (select '@'||db_link from dba_synonyms b where b.synonym_name = a.object_name and b.owner = a.owner and b.db_link is not null) end fullref

from dba_objects a

where object_name like upper('&&1')

order by 1,2,3

/

image29.emf
showconstraints.sql

showconstraints.sql
break on constraint_name skip 1 on parent_table_name

col column_name format a30

col sort_order noprint

col select_id noprint

select a.owner,a.table_name,a.constraint_name,a.constraint_type,c.column_name,b.owner parent_child_owner,b.table_name parent_child_table_name,b.constraint_type,a.index_name,decode(a.constraint_type,'P',1,'U',2) sort_order,1 select_id

from dba_constraints a

 ,dba_constraints b

 ,dba_cons_columns c

where a.owner = upper('&&1')

and a.table_name = upper('&&2')

and a.r_owner = b.owner(+)

and a.r_constraint_name = b.constraint_name(+)

and a.owner = c.owner

and a.constraint_name = c.constraint_name

and a.constraint_type != 'C'

union all

select a.owner,a.table_name,a.constraint_name,a.constraint_type,c.column_name,b.owner parent_child_owner,b.table_name parent_child_table_name,b.constraint_type,a.index_name,decode(a.constraint_type,'P',1,'U',2) sort_order,2 select_id

from dba_constraints a

 ,dba_constraints b

 ,dba_cons_columns c

where b.owner = upper('&&1')

and b.table_name = upper('&&2')

and b.constraint_type in ('P','U')

and a.r_owner = b.owner

and a.r_constraint_name = b.constraint_name

and b.table_name != a.table_name

and a.owner = c.owner

and a.constraint_name = c.constraint_name

order by select_id,sort_order,owner,table_name,constraint_name,column_name

/

image30.emf
showindexes.sql

showindexes.sql
set verify off

break on index_name skip 1

col column_name format a30

select index_owner,index_name,column_name

,(select index_type from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) index_type

,(select uniqueness from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) uniqueness

,(select tablespace_name from dba_indexes b where b.owner = a.index_owner and b.index_name = a.index_name) tablespace_name

from dba_ind_columns a

where table_name = upper('&&2')

and table_owner = upper('&&1')

order by 1,2,column_position

/

image1.jpeg

