Information Needed in Tuning a SQL Query
The point of this document is NOT to teach you how to tune SQL; it is to help you collect the information you need in order to tune or have someone else help you tune SQL.
In order to tune a SQL Query, specific pieces of information are needed. Some of this is obvious yet all of us can point to hundreds of posts on the WWW where someone has asked for help tuning a SQL Statement and then for example, they did not actually post the statement. How does one tune a query when one has never seen it?

So to improve the overall state of affairs in the SQL Tuning space, here are the details of what information is needed to tune a problem query. I will provide SQL Scripts that gather most of this information needed to tune a SQL Query, so as to make it easier for you to provide this information in your discussions with others.

If you are interested in improving your own SQL Tuning skills, then I refer you to my book: Oracle SQL Performance Tuning and Optimization: It’s all about the Cardinalities. This can be found on Amazon (Ctrl+Click to follow the link).

http://www.amazon.com/Oracle-Performance-Tuning-Optimization-Cardinalities/dp/1501022695

This book like most books, being relevant to your career development, is likely covered under your company’s reimbursement policy. So if you want the book, ask your Boss if you can get it and expense it. After your boss gives you verbal approval, buy it from Amazon and submit an expense report to get your money back. There is nothing wrong with letting your company invest a few more dollars in your professional growth, especially since you will be spending your personal time reading this book to improve skills which they will be quick to exploit.

In addition, the first chapter of the book is FREE, and the scripts from the book are FREE too. You do not need to buy the book to get these. You can get them from this link below. Reading the first chapter before you buy the book and using the scripts a little, are both good ways to satisfy yourself and your Boss that the investment is worth it. Go here to OraFAQ to download them.

http://www.orafaq.com/forum/m/634324/#msg_634324

So, if you are planning on doing a tuning session or asking someone else to do a tuning session with you or for you, then you will need at some point to gather together the following bits of information.
Four categories of information we will collect related to SQL Tuning:

· Basic Diagnosis Information
· Advanced Diagnosis Information
· Active Diagnosis Information (we will ignore this data in this teaching document)
· Documentation Related Information

First there is the BASIC information that is needed to understand the problem space. This basic information gives us an appreciation of the performance issue, and what some potential problems might be. For example, this tell us the join order of tables and lets us judge if this order is a good one or not. Then once an understanding of the query is had, additional information may be needed in order to suggest possible fixes. For example, maybe cardinalities in the plan suggest indexes would help. If so, then we would need first to check the list of indexes that already exist on the plan’s tables. Next, for very difficult problems, it may be necessary to monitor specific aspects of an actively running query or consult AWR data for the same data only historical. For example, we might want to check the efficiency of hash joins to see if they are OPTIMAL or ONE-PASS or if they are the potentially problematic MULTI-PASS. So we need to run the query and monitor its temp space usage, or check AWR for historical usage data. Last, we may want additional documentary types of information to make explaining things easier to others. For example, a data model and query diagram are pictures which provide good artifacts for you to talk to when explaining how you solved the problem.
Basic Diagnosis Information:

· The SQL Statement
· A Business Description of the query’s purpose (what does the business think the query does?)
· The Query Execution Plan (must include PLAN_OUTPUT and PREDICATES sections)
· Cardinality Information (table row counts, filtered row counts, estimated and actuals)
· Current Runtime (how long does it run in seconds/minutes/hours)
· Expected Runtime (how fast do you want it to run) (as fast as possible is not a good answer!)
· Basic Environment (EXADATA or not?)

With this information, most Oracle Professionals can engage in a meaningful discourse over; what problems might exist, what possible strategies and solutions might be appropriate, and ultimately -- how a query can be made faster.

SELECT COUNT(*) FROM VW_EMP_LOC_DIM;

DESCRIPTION: Shows basic employment status of every employee at all active locations.

Plan hash value: 1232802935

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		1
1	SORT AGGREGATE		1
2	VIEW	VW_EMP_LOC_DIM	198M
3	UNION-ALL		
* 4	HASH JOIN		296K
* 5	VIEW		240K
* 6	WINDOW SORT PUSHED RANK		240K
* 7	FILTER		
* 8	TABLE ACCESS STORAGE FULL	EMP_DIM	240K
* 9	TABLE ACCESS STORAGE FULL	EMP_LOC_DIM	296K
10	COUNT		
* 11	HASH JOIN		152M
12	VIEW		8874
13	HASH UNIQUE		8874
* 14	FILTER		
* 15	TABLE ACCESS STORAGE FULL	EMPLR_LOC_DIM	8874
16	VIEW		240K
17	MINUS		
18	SORT UNIQUE		240K
* 19	TABLE ACCESS STORAGE FULL	EMP_DIM	240K
20	SORT UNIQUE		251K
* 21	TABLE ACCESS STORAGE FULL	EMP_LOC_DIM	251K

Predicate Information (identified by operation id):

 4 - access("EMP_GID"="EL"."EMP_LOC_GID")
 5 - filter("PRTY_REF_ID_RNK"=1)
 6 - filter(RANK() OVER (PARTITION BY "GRP_BEN_CASE_ID","PRTY_REF_ID" ORDER BY CASE
 "EE"."EMPLMT_STAT_CD" WHEN 'T' THEN 2 WHEN 'R' THEN 2 WHEN 'D' THEN 2 WHEN 'I' THEN 2 ELSE 1 END
 ,INTERNAL_FUNCTION("EE"."SRCE_EFF_START_TMSP") DESC ,INTERNAL_FUNCTION("EE"."EMP_PK_ID") DESC)<=1)
 7 - filter(SYS_CONTEXT('APP1','CURRENT_SCHEMA')='CLDW_THPA_DLV1')
 8 - storage("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EE"."SRCE_APP_SYS_CD"='ELIG')
 filter("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EE"."SRCE_APP_SYS_CD"='ELIG')
 9 - storage("EL"."POPULATION_STATUS_CD"<>'D')
 filter("EL"."POPULATION_STATUS_CD"<>'D')
 11 - access("A"."GRP_BEN_CASE_ID"="B"."GRP_BEN_CASE_ID")
 14 - filter(SYS_CONTEXT('APP1','CURRENT_SCHEMA')='CLDW_THPA_DLV1')
 15 - storage("E"."EMPLR_LOC_PK_ID"<>(-1) AND "E"."EMPLR_LOC_PK_ID"<>(-2) AND
 "E"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00')
 filter("E"."EMPLR_LOC_PK_ID"<>(-1) AND "E"."EMPLR_LOC_PK_ID"<>(-2) AND
 "E"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00')
 19 - storage("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EE"."POPULATION_STATUS_CD"<>'D' AND "EE"."EMP_PK_ID"<>(-1) AND "EE"."EMP_PK_ID"<>(-2))
 filter("EE"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EE"."POPULATION_STATUS_CD"<>'D' AND "EE"."EMP_PK_ID"<>(-1) AND "EE"."EMP_PK_ID"<>(-2))
 21 - storage("EL"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EL"."POPULATION_STATUS_CD"<>'D')
 filter("EL"."SRCE_EFF_END_TMSP"=TIMESTAMP' 9999-12-31 00:00:00' AND
 "EL"."POPULATION_STATUS_CD"<>'D')

Note

 - dynamic sampling used for this statement (level=4)
 - automatic DOP: Computed Degree of Parallelism is 1

@genfrpspreadsheetcode411g.sql
 Plan Filtered Actual
ID TABLE_NAME NUM_ROWS ROWCOUNT Cardinality Cardinality FRP
----- ------------- ---------- ---------- ----------- ----------- ------
 8 EMP_DIM 6243035 6243035 240117 215414 3.5
 9 EMP_LOC_DIM 329699 329699 296337 329699 100.0
 15 EMPLR_LOC_DIM 8874 8874 8874 8872 100.0
 19 EMP_DIM 6243035 6243035 240117 236469 3.8
 21 EMP_LOC_DIM 329699 329699 251761 212993 64.6

5 rows selected.

CURRENT RUNTIME: 3 minutes 15 seconds.

EXPECTED RUNTIME: 3 seconds (based on volume of data)

EXADATA: Yes (note “storage” keyword in the query plan)

Given the above information, people can see the important parts of your problem and start to answer significant questions like:

· What is the query Driving Table and is it reasonable?
· What is the query Join Order and is it reasonable?
· What is the Data Volume being fed into the query?
· Does the Current Runtime align with the Number of Rows being manipulated?
· Does the Expected Runtime seem realistic?
· Where is Row Filtering occurring and how much is occurring?
· Where might Plan Cardinalities be wrong?
· What is the basic Query Style (precision or warehouse)?
· Do tables have appropriate Access Methods used against them?
· Are joins being done with appropriate Join Methods?
· Where are there possible Filter Inefficiencies in the query plan?
· Where are there possible Join Inefficiencies in the query plan?
· Does Query Logic match Business Semantics?

Scripts I will give you for collecting this information include:

· SHOWPLAN11G.sql
· SHOWTPLAN11GSHORT.sql
· SHOWPLANFRPSPREADSHEETCODE11G.sql
· LOADPLANFROMCACHE11G.sql
· LOADPLANFROMHIST1G.sql
Advanced Diagnosis Information:

· Indexes on the tables referenced by the query
· Constraints on the tables referenced by the query
· Column Statistics for specific tables and columns
· Histograms for specific tables and columns
· Various System Parameter Settings
· If EXADATA then statistics showing SMARTSCAN effectiveness

After reviewing this basic information, additional information might be relevant. This could include any of the above, which will be used to consider alternative ideas that will allow you to change something to make your query go faster.

@showplantables11g

 ID OBJECT_OWNER OBJECT_NAME OBJECT_ALIAS
---------- ------------------------------ ------------------------------ --------------------
 18 SCOTT EMPLR_LOC_DIM E @ SEL$8
 6 SCOTT EMP_DIM EE @ SEL$4
 13 SCOTT EMP_DIM EE @ SEL$6
 7 SCOTT EMP_LOC_DIM EL @ SEL$2
 15 SCOTT EMP_LOC_DIM EL @ SEL$7

5 rows selected.

@showplantablesunique11g

OBJECT_OWNER OBJECT_NAME
------------------------------ ------------------------------
SCOTT EMPLR_LOC_DIM
SCOTT EMP_DIM
SCOTT EMP_LOC_DIM

3 rows selected.

@showplanindexesunique11g

TABLE_OWNER TABLE_NAME INDEX_NAME INDEX_OWNER
-------------- ------------------------------ ------------------------------ --------------
SCOTT EMPLR_LOC_DIM PK_EMPLR_LOC SCOTT
SCOTT EMP_DIM PK_EMP SCOTT
SCOTT EMP_LOC_DIM PK_EMP_LOC SCOTT

3 rows selected.

@showplanindexes11g

TABLE_OWNER INDEX_OWNER INDEX_NAME COLUMN_NAME INDEX_TYPE UNIQUENES TABLESPACE_NAME
------------ ------------ ------------- ---------------- ------------ --------- -----------------
SCOTT SCOTT PK_EMPLR_LOC EMPLR_LOC_PK_ID NORMAL UNIQUE CLDW_DATA_01
SCOTT SCOTT PK_EMP EMP_PK_ID NORMAL UNIQUE CLDW_DATA_01
SCOTT SCOTT PK_EMP_LOC EMP_LOC_PK_ID NORMAL UNIQUE CLDW_DATA_01

3 rows selected.

Elapsed: 00:00:00.14

@showplanconstraints11g

OWNER TABLE_NAME CONSTRAINT_NAME C COLUMN_NAME PCHILD_OWNER PCHILD_TABLE_NAME P INDEX_NAME
----- -------------- --------------- - --------------- ------------ ----------------- - ---------------
SCOTT EMPLR_LOC_DIM PK_EMPLR_LOC P EMPLR_LOC_PK_ID PK_EMPLR_LOC

SCOTT EMP_DIM PK_EMP P EMP_PK_ID PK_EMP

2 rows selected.

I apologize for the line wraps here. Just not much to do about it if the artifact is going to show enough for you to understand it. The script prints better in SQL*Plus.
@showcolstats SCOTT EMPLR_LOC_DIM

COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS SAMPLE_SIZE AVG_COL_LEN DENSITY LAST_ANALYZED GLO USE LOW_VALUE HIGH_VALUE
------------------------------ ------------ ---------- ----------- ----------- ----------- ---------- ---------------------- --- --- --------------- ---------------
BATCH_ID 2 0 1 7620 5 .5 20-jun-2013.19:21:05 YES NO "56473" "56779"
BUS_EFF_END_TMSP 1 0 1 7620 11 1 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
BUS_EFF_START_TMSP 29 0 1 7620 11 .034482759 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
DW_LST_UPD_TMSP 2 0 1 7620 11 .5 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
DW_POPULATION_TMSP 2 0 1 7620 11 .5 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
EMPLR_LOC_GID 7620 0 1 7620 6 .000131234 20-jun-2013.19:21:05 YES NO "4309040" "4407795"
EMPLR_LOC_HRCHY_LVL1_DESC 56 0 56 7620 4 .000065617 20-jun-2013.19:21:05 YES NO "AA" "WY"
EMPLR_LOC_HRCHY_LVL1_NM 2 0 2 7620 26 .000065617 20-jun-2013.19:21:05 YES NO "Employee Work "Employee Work
EMPLR_LOC_HRCHY_LVL2_DESC 599 0 254 7620 28 .00199495 20-jun-2013.19:21:05 YES NO "-ATLANTA (GEE2 "WAUSA"
EMPLR_LOC_HRCHY_LVL2_NM 5 0 5 7620 15 .000065617 20-jun-2013.19:21:05 YES NO "EMPLOYEE DEPAR "WORK LOCATION
EMPLR_LOC_HRCHY_LVL3_DESC 24 0 24 7620 5 .000065617 20-jun-2013.19:21:05 YES NO "96800" "WILSONVILLE"
EMPLR_LOC_HRCHY_LVL3_NM 5 0 5 7620 32 .000065617 20-jun-2013.19:21:05 YES NO "EMPLOYEE COST "WORK CITY"
EMPLR_LOC_HRCHY_LVL4_DESC 7407 0 254 7620 17 .000144844 20-jun-2013.19:21:05 YES NO "4izzzbnbhgf, L "Zyzzzghjrtx, F
EMPLR_LOC_HRCHY_LVL4_NM 4 0 4 7620 21 .000065617 20-jun-2013.19:21:05 YES NO "EMPLOYEE DEPAR "WORK LOCATION
EMPLR_LOC_HRCHY_LVL5_DESC 107 0 107 7620 5 .000065617 20-jun-2013.19:21:05 YES NO "10100" "TESTING"
EMPLR_LOC_HRCHY_LVL5_NM 4 0 4 7620 33 .000065617 20-jun-2013.19:21:05 YES NO "EMPLOYEE COST "N/A"
EMPLR_LOC_PK_ID 7620 0 1 7620 10 .000131234 20-jun-2013.19:21:05 YES NO "56473000000001 "56779000001849
GRP_BEN_CASE_ID 4 0 4 7620 7 .000065617 20-jun-2013.19:21:05 YES NO "620920" "902236"
POPULATION_STATUS_CD 1 0 1 7620 2 1 20-jun-2013.19:21:05 YES NO "I" "I"
SRCE_EFF_END_TMSP 1 0 1 7620 11 .000065617 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
SRCE_EFF_START_TMSP 29 0 1 7620 11 .034482759 20-jun-2013.19:21:05 YES NO "UNSUPPORTED DA "UNSUPPORTED DA
SRCE_SYS_CD 1 0 1 7620 5 .000065617 20-jun-2013.19:21:05 YES NO "ITMS" "ITMS"

22 rows selected.

I had to use a different schema here since the objects from the view we are using as our example here, did not have any histograms.
@showhistogram dbsnmp bsln_baselines instance_name

OWNER TABLE_NAME COLUMN_NAME ENDPOINT_NUMBER ENDPOINT_VALUE CARDINALITY PCT ACTUAL_VALUE
------- -------------------- -------------------- --------------- -------------- ----------- ---------- ------------
DBSNMP BSLN_BASELINES INSTANCE_NAME 3 5.2646E+35 3 38 edadev1
DBSNMP BSLN_BASELINES INSTANCE_NAME 6 5.2646E+35 3 38 edadev2
DBSNMP BSLN_BASELINES INSTANCE_NAME 7 5.2646E+35 1 13 edadvs2
DBSNMP BSLN_BASELINES INSTANCE_NAME 8 5.2646E+35 1 13 edadvs3

4 rows selected.

Elapsed: 00:00:00.13

16:47:57 SQL> @showparameters

KEYWORD NAME VALUE ISDEFAULT
---------- -- ------------------------------ ---------
cpu cpu_count 6 TRUE
cpu parallel_threads_per_cpu 2 TRUE
cpu resource_manager_cpu_allocation 6 TRUE

dyn optimizer_dynamic_sampling 2 TRUE

index optimizer_index_caching 0 TRUE
index optimizer_index_cost_adj 100 TRUE
index optimizer_use_invisible_indexes FALSE TRUE
index skip_unusable_indexes TRUE TRUE

mode optimizer_mode ALL_ROWS TRUE
mode remote_dependencies_mode TIMESTAMP TRUE
mode result_cache_mode MANUAL TRUE

optimizer optimizer_capture_sql_plan_baselines FALSE TRUE
optimizer optimizer_features_enable 11.2.0.1 FALSE
optimizer optimizer_secure_view_merging TRUE TRUE
optimizer optimizer_use_pending_statistics FALSE TRUE
optimizer optimizer_use_sql_plan_baselines TRUE TRUE

parallel parallel_adaptive_multi_user TRUE TRUE
parallel parallel_automatic_tuning FALSE TRUE
parallel parallel_degree_limit CPU TRUE
parallel parallel_degree_policy MANUAL TRUE
parallel parallel_force_local FALSE TRUE
parallel parallel_instance_group TRUE
parallel parallel_io_cap_enabled FALSE TRUE
parallel parallel_max_servers 60 TRUE
parallel parallel_min_percent 0 TRUE
parallel parallel_min_servers 0 TRUE
parallel parallel_min_time_threshold AUTO TRUE
parallel parallel_server FALSE TRUE
parallel parallel_server_instances 1 TRUE
parallel parallel_servers_target 24 TRUE

pga pga_aggregate_target 0 TRUE

rewrite query_rewrite_enabled TRUE TRUE
rewrite query_rewrite_integrity enforced TRUE

size bitmap_merge_area_size 1048576 TRUE
size create_bitmap_area_size 8388608 TRUE
size hash_area_size 131072 TRUE
size parallel_execution_message_size 16384 TRUE
size sort_area_retained_size 0 TRUE
size sort_area_size 65536 TRUE
size workarea_size_policy AUTO TRUE

statistics statistics_level TYPICAL TRUE
statistics timed_os_statistics 0 TRUE
statistics timed_statistics TRUE FALSE

43 rows selected.

With the above information, SQL Tuners can make comparisons between what the plan is using, and what the plan could be using, and what they think might be missing that the plan could have used. They can answer questions like these.

· Are we working in the correct schemas with the correct objects?
· What alternative indexes could have been used?
· Do we think indexes are missing that might provide more efficient access paths for precision queries?
· Are indexes used taking advantage of all relevant columns in query predicates?
· Are constraints missing that could have supplied additional information to the optimizer?
· Do column statistics suggest an OUT-OF-BOUNDS problem?
· Do statistics look old and possibly need re-collection?
· If data is SKEWED, are the necessary Histograms in place to address this?
· Could EXTENDED STATISTICS help?
· Could better DYNAMIC_SAMPLING help?
· Do database parameters in general reflect a good environment?

Scripts I can give you for collecting this information include:

· SHOWPLANTABLES11G.sql
· SHOWPLANTABLESUNIQUE11G.sql
· SHOWPLANINDEXESUNIQUE11G.sql
· SHOWPLANINDXES11G.sql
· SHOWPLANCONSTRAINTS11G.sql
· SHOWCOLSTATS.sql
· SHOWHISTOGRAMS.sql
· SHOWPARAMETERS.sql

Active Diagnosis Information

This information is for more advanced problems. Typically it requires running a query to see the resources it consumes, and possibly looking at historical executions of the query to see what has happened before. There are uses for this, but they involve deeper problems and would require many more pages to describe. So for the time being I am skipping this one since 90% of what we can solve can be handled by the BASIC and ADVANCED information we have already collected. At some later date I will come back and fill this in as time permits.
[bookmark: _GoBack]Documentation Related Information

Query Diagram
Data Model for the Query

When documenting your results, or when providing context for others, these pictures provide good references. The help people visualize where your query sits with respect to the entire database. Perspective is usually a good thing.
Scripts I can give you for collecting this information include:

For this I currently have no scripts to offer. You will need to use other tools to create your pictures. I would suggest TOAD is one possibility. Though it is a manual process, you can drag-and-drop specific tables into a model window and have Toad hook them all up into a picture. Since other scripts you have used here show you the tables involved, you have the necessary information to create a data model diagram for the tables in your query.

So as you can see, it is not difficult at all to acquire the information needed for a tuning session, when you use the scripts. This information will help you and those who assist you, to tune you problem SQL. Please refer back to page 1 above for the location of the FREE scripts.

Good luck, and remember to provide this information whenever you are asking for help.

Kevin Meade
